4.7 Article

Distinct Roles of GABAergic Interneurons in the Regulation of Striatal Output Pathways

期刊

JOURNAL OF NEUROSCIENCE
卷 30, 期 6, 页码 2223-2234

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4870-09.2010

关键词

-

资金

  1. National Institutes of Health [R01 NS064984]
  2. Pew Biomedical Scholars Program
  3. W. M. Keck Foundation
  4. Wayne and Gladys Valley Foundation

向作者/读者索取更多资源

Striatal GABAergic microcircuits are critical for motor function, yet their properties remain enigmatic due to difficulties in targeting striatal interneurons for electrophysiological analysis. Here, we use Lhx6-GFP transgenic mice to identify GABAergic interneurons and investigate their regulation of striatal direct-and indirect-pathway medium spiny neurons (MSNs). We find that the two major interneuron populations, persistent low-threshold spiking (PLTS) and fast spiking (FS) interneurons, differ substantially in their excitatory inputs and inhibitory outputs. Excitatory synaptic currents recorded from PLTS interneurons are characterized by a small, nonrectifying AMPA receptor-mediated component and a NMDA receptor-mediated component. In contrast, glutamatergic synaptic currents in FS interneurons have a large, strongly rectifying AMPA receptor-mediated component, but no detectable NMDA receptor-mediated responses. Consistent with their axonal morphology, the output of individual PLTS interneurons is relatively weak and sparse, whereas FS interneurons are robustly connected to MSNs and other FS interneurons and appear to mediate the bulk of feedforward inhibition. Synaptic depression of FS outputs is relatively insensitive to firing frequency, and dynamic-clamp experiments reveal that these short-term dynamics enable feedforward inhibition to remain efficacious across a broad frequency range. Surprisingly, we find that FS interneurons preferentially target direct-pathway MSNs over indirect-pathway MSNs, suggesting a potential mechanism for rapid pathway-specific regulation of striatal output pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据