4.7 Article

Peptide-Induced Modulation of Synaptic Transmission and Escape Response in Drosophila Requires Two G-Protein-Coupled Receptors

期刊

JOURNAL OF NEUROSCIENCE
卷 30, 期 44, 页码 14724-14734

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3612-10.2010

关键词

-

资金

  1. Hospital for Sick Children Research Training Center
  2. Canadian Institutes of Health Research (CIHR) [MOP 14143]
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)
  4. Tier I Canada Research Chair in Molecular and Developmental Neurobiology

向作者/读者索取更多资源

Neuropeptides are found in both mammals and invertebrates and can modulate neural function through activation of G-protein-coupled receptors (GPCRS). The precise mechanisms by which many of these GPCRs modulate specific signaling cascades to regulate neural function are not well defined. We used Drosophila melanogaster as a model to examine both the cellular and behavioral effects of DPKQDFMRFamide, the most abundant peptide encoded by the dFMRF gene. We show that DPKQDFMRFamide enhanced synaptic transmission through activation of two G-protein-coupled receptors, Fmrf Receptor (FR) and Dromyosupress in Receptor-2 (DmsR-2). The peptide increased both the presynaptic Ca(2+) response and the quantal content of released transmitter. Peptide-induced modulation of synaptic function could be abrogated by depleting intracellular Ca(2+) stores or by interfering with Ca(2+) release from the endoplasmic reticulum through disruption of either the ryanodine receptor or the inositol 1,4,5-trisphosphate receptor. The peptide also altered behavior. Exogenous DPKQDFMRFamide enhanced fictive locomotion; this required both the FR and DmsR-2. Likewise, both receptors were required for an escape response to intense light exposure. Thus, coincident detection of a peptide by two GPCRs modulates synaptic function through effects of Ca(2+)-induced Ca(2+) release, and we hypothesize that these mechanisms are involved in behavioral responses to environmental stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据