4.7 Article

Difference in Binocularity and Ocular Dominance Plasticity between GABAergic and Excitatory Cortical Neurons

期刊

JOURNAL OF NEUROSCIENCE
卷 30, 期 4, 页码 1551-1559

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5025-09.2010

关键词

-

向作者/读者索取更多资源

Neuronal circuits in the cerebral cortex consist mainly of glutamatergic/excitatory and GABAergic/inhibitory neurons. In the visual cortex, the binocular responsiveness of neurons is modified by monocular visual deprivation during the critical period of postnatal development. Although GABAergic neurons are considered to play a key role in the expression of the critical period, it is not known whether their binocular responsiveness and ocular dominance plasticity are different from those of excitatory neurons. Recently, the end of the critical period was found to be not strict so that cortical neurons in the adult still have some ocular dominance plasticity. It is not known, however, which type of neurons or both maintain such plasticity in adulthood. To address these issues, we applied in vivo two-photon functional Ca2+ imaging to transgenic mice whose GABAergic neurons express a yellow fluorescent protein called Venus. We found that GABAergic neurons are more binocular than excitatory neurons in the normal visual cortex, and both types of neurons show the same degree of modifiability to monocular visual deprivation during the critical period, but the modifiability of GABAergic neurons is stronger than that of excitatory neurons after the end of the critical period.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据