4.7 Article

A Role for the Ubiquitin-Proteasome System in Activity-Dependent Presynaptic Silencing

期刊

JOURNAL OF NEUROSCIENCE
卷 30, 期 5, 页码 1798-1809

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4965-09.2010

关键词

-

资金

  1. National Institutes of Health (NIH) [DA018109, NS044923, MH78823, P30NS057105]

向作者/读者索取更多资源

Chronic changes in electrical excitability profoundly affect synaptic transmission throughout the lifetime of a neuron. We have previously explored persistent presynaptic silencing, a form of synaptic depression at glutamate synapses produced by ongoing neuronal activity and by strong depolarization. Here we investigate the involvement of the ubiquitin-proteasome system (UPS) in the modulation of presynaptic function. We found that proteasome inhibition prevented the induction of persistent presynaptic silencing. Specifically, application of the proteasome inhibitor MG-132 (carbobenzoxy-L-leucyl-L-leucyl-L-leucinal) prevented decreases in the size of the readily releasable pool of vesicles and in the percentage of active synapses. Presynaptic silencing was accompanied by decreases in levels of the priming proteins Munc13-1 and Rim1. Importantly, overexpression of Rim1 alpha prevented the induction of persistent presynaptic silencing. Furthermore, strong depolarization itself increased proteasome enzymatic activity measured in cell lysates. These results suggest that modulation of the UPS by electrical activity contributes to persistent presynaptic silencing by promoting the degradation of key presynaptic proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据