4.7 Article

Scaffold Protein NHERF2 Determines the Coupling of P2Y1 Nucleotide and mGluR5 Glutamate Receptor to Different Ion Channels in Neurons

期刊

JOURNAL OF NEUROSCIENCE
卷 30, 期 33, 页码 11068-11072

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2597-10.2010

关键词

-

资金

  1. Wellcome Trust [081706, 089370]

向作者/读者索取更多资源

Expressed metabotropic group 1 glutamate mGluR5 receptors and nucleotide P2Y1 receptors (P2Y1Rs) show promiscuous ion channel coupling in sympathetic neurons: their stimulation inhibits M-type [Kv7, K(M)] potassium currents and N-type (Ca(V)2.2) calcium currents (Kammermeier and Ikeda, 1999; Brown et al., 2000). These effects are mediated by G(q) and G(i/o) G-proteins, respectively. Via their C-terminal tetrapeptide, these receptors also bind to the PDZ domain of the scaffold protein NHERF2, which enhances their coupling to G(q)-mediated Ca(2+) signaling (Fam et al., 2005; Paquet et al., 2006b). We investigated whether NHERF2 could modulate coupling to neuronal ion channels. We find that coexpression of NHERF2 in sympathetic neurons (by intranuclear cDNA injections) does not affect the extent of M-type potassium current inhibition produced by either receptor but strongly reduced CaV2.2 inhibition by both P2Y1R and mGluR5 activation. NHERF2 expression had no significant effect on CaV2.2 inhibition by norepinephrine (via alpha(2)-adrenoceptors, which do not bind NHERF2), nor on CaV2.2 inhibition produced by an expressed P2Y1R lacking the NHERF2-binding DTSL motif. Thus, NHERF2 selectively restricts downstream coupling of mGluR5 and P2Y1Rs in neurons to Gq-mediated responses such as M-current inhibition. Differential distribution of NHERF2 in neurons may therefore determine coupling of mGluR5 receptors and P2Y1 receptors to calcium channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据