4.7 Article

Brain-Derived Neurotrophic Factor Reduces Amyloidogenic Processing through Control of SORLA Gene Expression

期刊

JOURNAL OF NEUROSCIENCE
卷 29, 期 49, 页码 15472-15478

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3960-09.2009

关键词

-

资金

  1. Lundbeck Foundation
  2. European Commission (MEMORIES)
  3. Helmholtz-Association
  4. Alzheimer Forschungsinitiative Cologne

向作者/读者索取更多资源

Sorting protein-related receptor with A-type repeats (SORLA) is a major risk factor in cellular processes leading to Alzheimer's disease (AD). It acts as sorting receptor for the amyloid precursor protein (APP) that regulates intracellular trafficking and processing into amyloidogenic-beta peptides (A beta). Overexpression of SORLA in neurons reduces while inactivation of gene expression (as in knock-out mouse models) accelerates amyloidogenic processing and senile plaque formation. The current study aimed at identifying molecular pathways that control SORLA gene transcription in vivo and that may contribute to low levels of receptor expression in the brain of patients with AD. Using screening approaches in primary neurons, we identified brain-derived neurotrophic factor (BDNF) as a major inducer of Sorla that activates receptor gene transcription through the ERK (extracellular regulated kinase) pathway. In line with a physiological role as regulator of Sorla, expression of the receptor is significantly impaired in mouse models with genetic (Bdnf(-/-)) or disease-related loss of BDNF activity in the brain (Huntington's disease). Intriguingly, exogenous application of BDNF reduced A beta production in primary neurons and in the brain of wild-type mice in vivo, but not in animals genetically deficient for Sorla. These findings demonstrate that the beneficial effects ascribed to BDNF in APP metabolism act through induction of Sorla that encodes a negative regulator of neuronal APP processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据