4.7 Article

Astroglia in Medullary Dorsal Horn (Trigeminal Spinal Subnucleus Caudalis) Are Involved in Trigeminal Neuropathic Pain Mechanisms

期刊

JOURNAL OF NEUROSCIENCE
卷 29, 期 36, 页码 11161-11171

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3365-09.2009

关键词

-

资金

  1. Nihon University School of Dentistry [18890204]
  2. Dental Research Center
  3. Nihon University
  4. Ministry of Education, Culture, Sports, Science, and Technology
  5. Japan Canada Joint Health Research Program [167458]
  6. National Institutes of Health [DE04786]
  7. Canadian Institutes of Health Research Grants [MOP-43095, MOP-82831]

向作者/读者索取更多资源

The aim of this study was to investigate whether astroglia in the medullary dorsal horn (trigeminal spinal subnucleus caudalis; Vc) may be involved in orofacial neuropathic pain following trigeminal nerve injury. The effects of intrathecal administration of the astroglial aconitase inhibitor sodium fluoroacetate (FA) were tested on Vc astroglial hyperactivity [as revealed by glial fibrillary acid protein (GFAP) labeling], nocifensive behavior, Vc extracellular signal-regulated kinase phosphorylation (pERK), and Vc neuronal activity in inferior alveolar nerve-transected (IANX) rats. Compared with sham-control rats, a significant increase occurred in GFAP-positive cells in ipsilateral Vc at postoperative day 7 in IANX rats, which was prevented following FA administration. FA significantly increased the reduced head withdrawal latency to high-intensity heat stimulation of the maxillary whisker pad skin in IANX rats, although it did not significantly affect the reduced escape threshold to low-intensity mechanical stimulation of the whisker skin in IANX rats. FA also significantly reduced the increased number of pERK-like immunoreactive cells in Vc and the enhanced Vc nociceptive neuronal responses following high-intensity skin stimulation that were documented in IANX rats, and glutamine administration restored the enhanced responses. These various findings provide the first documentation that astroglia is involved in the enhanced nociceptive responses of functionally identified Vc nociceptive neurons and in the associated orofacial hyperalgesia following trigeminal nerve injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据