4.7 Article

Modulation of Neuritogenesis by a Protein Implicated in X-Linked Mental Retardation

期刊

JOURNAL OF NEUROSCIENCE
卷 29, 期 40, 页码 12419-12427

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5954-08.2009

关键词

-

资金

  1. National Institutes of Health (NIH) [AG024494, NS20591, GM67005]
  2. National Science Foundation [IBN-0548543]
  3. National Alliance for Research on Schizophrenia and Depression Toulmin Independent Investigator Award
  4. [1-FY08-464]

向作者/读者索取更多资源

Posttranscriptional regulation is an important control mechanism governing gene expression in neurons. We recently demonstrated that VCX-A, a protein implicated in X-linked mental retardation, is an RNA-binding protein that specifically binds the 5' end of capped mRNAs to prevent their decapping and decay. Previously, expression of VCX-A was reported to be testes restricted. Consistent with a role in cognitive function, we demonstrate that VCX-A is ubiquitously expressed in human tissues including the brain. Moreover, retinoic acid-induced differentiation of human SH-SY5Y neuroblastoma cells promoted the accumulation of VCX-A in distinct cytoplasmic foci within neurites that colocalize with staufen1-containing RNA granules, suggesting a role in translational suppression and/or mRNA transport. Exogenous expression of VCX-A in rat primary hippocampal neurons, which normally do not express the primate-restricted VCX proteins, promoted neurite arborization, and shRNA-directed knockdown of the VCX genes in SH-SY5Y cells resulted in a reduction of both primary and secondary neurite projections upon differentiation. We propose that the cap-binding property of VCX-A reflects a role of this protein in mRNA translational regulation. In support of this hypothesized role, we demonstrate that VCX-A can specifically bind a subset of mRNAs involved in neuritogenesis and is also capable of promoting translational silencing. Thus, VCX-A contains the capacity to modulate the stability and translation of a subset of target mRNAs involved in neuronal differentiation and arborization. It is plausible that defects of these functions in the absence of the VCX genes could contribute to a mental retardation phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据