4.7 Article

Reelin Stabilizes the Actin Cytoskeleton of Neuronal Processes by Inducing n-Cofilin Phosphorylation at Serine3

期刊

JOURNAL OF NEUROSCIENCE
卷 29, 期 1, 页码 288-299

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2934-08.2009

关键词

radial migration; Reelin signaling; cortical lamination; actin cytoskeleton; cofilin; reeler mutant

资金

  1. Deutsche Forschungsgemeinschaft [SFB 780, SFB 592, F0 223/6-1, B0 1806/3-1]
  2. Hertie Foundation

向作者/读者索取更多资源

The extracellular matrix protein Reelin, secreted by Cajal-Retzius cells in the marginal zone of the cortex, controls the radial migration of cortical neurons. Reelin signaling involves the lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR), the adapter protein Disabled1 (Dab1), and phosphatidylinositol-3-kinase (PI3K). Eventually, Reelin signaling acts on the cytoskeleton; however, these effects on cytoskeletal organization have remained elusive. In Reelin-deficient mutant mice, most cortical neurons are unable to migrate to their destinations, suggesting a role for Reelin signaling in the dynamic cytoskeletal reorganization that is required for neurons to migrate. Here, we show that Reelin signaling leads to serine3 phosphorylation of n-cofilin, an actin-depolymerizing protein that promotes the disassembly of F-actin. Phosphorylation at serine3 renders n-cofilin unable to depolymerize F-actin, thereby stabilizing the cytoskeleton. We provide evidence for ApoER2, Dab1, Src family kinases (SFKs), and PI3K to be involved in n-cofilin serine3 phosphorylation. Phosphorylation of n-cofilin takes place in the leading processes of migrating neurons as they approach the Reelin-containing marginal zone. Immunostaining for phospho-cofilin in dissociated reeler neurons is significantly increased after incubation in Reelin-containing medium compared with control medium. In a stripe choice assay, neuronal processes are stable on Reelin-coated stripes but grow on control stripes by forming lamellipodia. These novel findings suggest that Reelin-induced stabilization of neuronal processes anchors them to the marginal zone which appears to be required for the directional migration process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据