4.7 Article

GPR56-Regulated Granule Cell Adhesion Is Essential for Rostral Cerebellar Development

期刊

JOURNAL OF NEUROSCIENCE
卷 29, 期 23, 页码 7439-7449

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1182-09.2009

关键词

-

资金

  1. National Institute of Neurological Disorders and Stroke [R01 NS35884, K08 NS045762, R01 NS057536]
  2. National Institutes of Health (NIH) [P30-HD 18655]
  3. Fundamental Neurobiology NIH Training [T32 NS007484-06]

向作者/读者索取更多资源

Mutations in GPR56, an orphan G-protein-coupled receptor (GPCR), cause bilateral frontoparietal polymicrogyria (BFPP), a disorder characterized by mental retardation, seizures, motor developmental delay, and ataxia. BFPP patients have structural abnormalities of the cerebral cortex, cerebellum, and pons. To shed light on the function of GPR56 and the anatomical and behavioral defects underlying BFPP, we analyzed the cerebellum of mice lacking this GPCR. Gpr56(-/-) mice display a severe malformation of the rostral cerebellum that develops perinatally. Defects involve fusion of adjacent lobules, disrupted layering of neurons and glia, and fragmentation of the pial basement membrane. At the age of defect onset, GPR56 expression is restricted specifically to developing granule cells in the rostral cerebellum, suggesting that GPR56 regulates properties of these cells. Indeed, granule cells from the rostral region of perinatal Gpr56(-/-) cerebella show loss of adhesion to extracellular matrix molecules of the pial basement membrane. Interference RNA-mediated knock-down of GPR56 recapitulates the loss of adhesion seen in knock-outs, and reexpression of GPR56 rescues the adhesion defect in knock-out granule cells. Loss of GPR56 does not affect cell proliferation, migration, or neurite outgrowth. These studies establish a novel role for GPR56 in the adhesion of developing neurons to basal lamina molecules and suggest that this adhesion is critical for maintenance of the pia and proper cerebellar morphogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据