4.7 Article

A Triplet Repeat Expansion Genetic Mouse Model of Infantile Spasms Syndrome, Arx(GCG)10+7, with Interneuronopathy, Spasms in Infancy, Persistent Seizures, and Adult Cognitive and Behavioral Impairment

期刊

JOURNAL OF NEUROSCIENCE
卷 29, 期 27, 页码 8752-8763

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0915-09.2009

关键词

-

资金

  1. Baylor Department of Neurology (Peter Kellaway Research Fund)
  2. Blue Bird Circle Foundation
  3. National Institute of Neurological Disorders and Stroke [NS29709]
  4. National Institute of Child Health and Human Development Eunice Shriver Intellectual and Developmental Disabilities Research Center [HD024064]
  5. People Against Childhood Epilepsy

向作者/读者索取更多资源

Infantile spasms syndrome (ISS) is a catastrophic pediatric epilepsy with motor spasms, persistent seizures, mental retardation, and in some cases, autism. One of its monogenic causes is an insertion mutation [c.304ins (GCG)(7)] on the X chromosome, expanding the first polyalanine tract of the interneuron-specific transcription factor Aristaless-related homeobox (ARX) from 16 to 23 alanine codons. Null mutation of the Arx gene impairs GABA and cholinergic interneuronal migration but results in a neonatal lethal phenotype. We developed the first viable genetic mouse model of ISS that spontaneously recapitulates salient phenotypic features of the human triplet repeat expansion mutation. Arx((GCG)10+7) (Arx plus 7) pups display abnormal spasm-like myoclonus and other key EEG features, including multifocal spikes, electrodecremental episodes, and spontaneous seizures persisting into maturity. The neurobehavioral profile of Arx mutants was remarkable for lowered anxiety, impaired associative learning, and abnormal social interaction. Laminar decreases of Arx+ cortical interneurons and a selective reduction of calbindin-, but not parvalbumin- or calretinin-expressing interneurons in neocortical layers and hippocampus indicate that specific classes of synaptic inhibition are missing from the adult forebrain, providing a basis for the seizures and cognitive disorder. Asignificant reduction of calbindin-, NPY (neuropeptide Y)-expressing, and cholinergic interneurons in the mutant striatum suggest that dysinhibition within this network may contribute to the dyskinetic motor spasms. This mouse model narrows the range of critical pathogenic elements within brain inhibitory networks essential to recreate this complex neurodevelopmental syndrome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据