4.7 Article

Age-Dependent Impairment of Spine Morphology and Synaptic Plasticity in Hippocampal CA1 Neurons of a Presenilin 1 Transgenic Mouse Model of Alzheimer's Disease

期刊

JOURNAL OF NEUROSCIENCE
卷 29, 期 32, 页码 10144-10152

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1856-09.2009

关键词

-

资金

  1. Centre National de la Recherche Scientifique,
  2. Universite Pierre et Marie Curie
  3. l'Institut de la Longevite et du Vieillissement (France)

向作者/读者索取更多资源

Presenilin 1 (PS1) mutations are responsible for a majority of early onset familial Alzheimer's disease (FAD) cases, in part by increasing the production of A beta peptides. However, emerging evidence suggests other possible effects of PS1 on synaptic dysfunction where PS1 might contribute to the pathology independent of A beta. We chose to study the L286V mutation, an aggressive FAD mutation which has never been analyzed at the electrophysiological and morphological levels. In addition, we analyzed for the first time the long term effects of wild-type human PS1 overexpression. We investigated the consequences of the overexpression of either wild-type human PS1 (hPS1) or the L286V mutated PS1 variant (mutPS1) on synaptic functions by analyzing synaptic plasticity and associated spine density changes from 3 to 15 months of age. We found that mutPS1 induces a transient increase observed only in 4- to 5-month-old mutPS1 animals in NMDA receptor (NMDA-R)-mediated responses and LTP compared with hPS1 mice and nontransgenic littermates. The increase in synaptic functions is concomitant with an increase in spine density. With increasing age, however, we found that the overexpression of human wild-type PS1 progressively decreased NMDA-R-mediated synaptic transmission and LTP, without neurodegeneration. These results identify for the first time a transient increase in synaptic function associated with L286V mutated PS1 variant in an age-dependent manner. In addition, they support the view that the PS1 overexpression promotes synaptic dysfunction in an A beta-independent manner and underline the crucial role of PS1 during both normal and pathological aging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据