4.7 Article

Molecular determinants of species-specific activation or blockade of TRPA1 channels

期刊

JOURNAL OF NEUROSCIENCE
卷 28, 期 19, 页码 5063-5071

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0047-08.2008

关键词

TRPA1; species specific; covalent modification; channel gating; activation; block

向作者/读者索取更多资源

TRPA1 is an excitatory, nonselective cation channel implicated in somatosensory function, pain, and neurogenic inflammation. Through covalent modification of cysteine and lysine residues, TRPA1 can be activated by electrophilic compounds, including active ingredients of pungent natural products ( e. g., allyl isothiocyanate), environmental irritants ( e. g., acrolein), and endogenous ligands (4-hydroxynonenal). However, how covalent modification leads to channel opening is not understood. Here, we report that electrophilic, thioaminal-containing compounds [ e. g., CMP1 (4-methyl-N-[ 2,2,2-trichloro-1-(4-nitro-phenylsulfanyl)-ethyl]-benzamide)] covalently modify cysteine residues but produce striking species-specific effects [i.e., activation of rat TRPA1 (rTRPA1) and blockade of human TRPA1 (hTRPA1) activation by reactive and nonreactive agonists]. Through characterizing rTRPA1 and hTRPA1 chimeric channels and point mutations, we identified several residues in the upper portion of the S6 transmembrane domains as critical determinants of the opposite channel gating: Ala-946 and Met-949 of rTRPA1 determine channel activation, whereas equivalent residues of hTRPA1 (Ser-943 and Ile-946) determine channel block. Furthermore, side-chain replacements at these critical residues profoundly affect channel function. Therefore, our findings reveal a molecular basis of species-specific channel gating and provide novel insights into how TRPA1 respond to stimuli.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据