4.7 Article

Fast subplasma membrane Ca2+ transients control exo-endocytosis of synaptic-like microvesicles in astrocytes

期刊

JOURNAL OF NEUROSCIENCE
卷 28, 期 37, 页码 9122-9132

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0040-08.2008

关键词

exocytosis; endocytosis; calcium; glutamate release; astrocytes; imaging

资金

  1. University of Lausanne, Lausanne, Switzerland

向作者/读者索取更多资源

Astrocytes are the most abundant glial cell type in the brain. Although not apposite for long-range rapid electrical communication, astrocytes share with neurons the capacity of chemical signaling via Ca2+-dependent transmitter exocytosis. Despite this recent finding, little is known about the specific properties of regulated secretion and vesicle recycling in astrocytes. Important differences may exist with the neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca2+ from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We here take advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses (Voglmaier et al., 2006; Balaji and Ryan, 2007); we combine epifluorescence and total internal reflection fluorescence imaging to investigate with unprecedented temporal and spatial resolution, the stimulus-secretion coupling underlying exo-endocytosis of glutamatergic synaptic-like microvesicles (SLMVs) in astrocytes. Our main findings indicate that ( 1) exo-endocytosis in astrocytes proceeds with a time course on the millisecond time scale (tau(exocytosis) = 0.24 +/- 0.017 s; tau(endocytosis) = 0.26 +/- 0.03 s) and (2) exocytosis is controlled by local Ca2+ microdomains. We identified submicrometer cytosolic compartments delimited by endoplasmic reticulum tubuli reaching beneath the plasma membrane and containing SLMVs at which fast (time-to-peak, similar to 50 ms) Ca2+ events occurred in precise spatial-temporal correlation with exocytic fusion events. Overall, the above characteristics of transmitter exocytosis from astrocytes support a role of this process in fast synaptic modulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据