4.7 Article

Nonrandom Local Circuits in the Dentate Gyrus

期刊

JOURNAL OF NEUROSCIENCE
卷 28, 期 47, 页码 12212-12223

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3612-08.2008

关键词

dentate gyrus; EPSP; IPSP; short-term plasticity; paired-recording; local circuits; two-photon imaging

资金

  1. National Institutes of Health (NIH) [R01-NS33590, T32-AG00271]

向作者/读者索取更多资源

The dentate hilus has been extensively studied in relation to its potential role in memory and in temporal lobe epilepsy. Little is known, however, about the synapses formed between the two major cell types in this region, glutamatergic mossy cells and hilar interneurons, or the organization of local circuits involving these cells. Using triple and quadruple simultaneous intracellular recordings in rat hippocampal slices, we find that mossy cells evoke EPSPs with high failure rates onto hilar neurons. Mossy cells show profound synapse specificity; 87.5% of their intralamellar connections are onto hilar interneurons. Hilar interneurons also show synapse specificity and preferentially inhibit mossy cells; 81% of inhibitory hilar synapses are onto mossy cells. Hilar IPSPs have low failure rates, are blocked by the GABA(A) receptor antagonist gabazine, and exhibit short-term depression when tested at 17 Hz. Surprisingly, more than half (57%) of the mossy cell synapses we found onto interneurons were part of reciprocal excitatory/inhibitory local circuit motifs. Neither the high degree of target cell specificity, nor the significant enrichment of structured polysynaptic local circuit motifs, could be explained by nonrandom sampling or somatic proximity. Intralamellar hilar synapses appear to function primarily by integrating synchronous inputs and presynaptic burst discharges, allowing hilar cells to respond over a large dynamic range of input strengths. The reciprocal mossy cell/interneuron local circuit motifs we find enriched in the hilus may generate sparse neural representations involved in hippocampal memory operations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据