4.7 Article

Wnt regulates axon behavior through changes in microtubule growth directionality: A new role for adenomatous polyposis coli

期刊

JOURNAL OF NEUROSCIENCE
卷 28, 期 34, 页码 8644-8654

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2320-08.2008

关键词

neurons; Wnt; Dishevelled; Gsk3; microtubules; APC

资金

  1. Wellcome Trust
  2. Biotechnology and Biological Sciences Research Council

向作者/读者索取更多资源

Axon guidance and target-derived signals control axonal behavior by regulating the cytoskeleton through poorly defined mechanisms. In particular, how these signaling molecules regulate the growth and directionality of microtubules is not well understood. Here we examine the effect of Wnts on growth cone remodeling, a process that precedes synapse formation. Time-lapse recordings reveal that Wnt3a rapidly inhibits growth cone translocation while inducing growth cone enlargement. These changes in axonal behavior are associated with changes in the organization of microtubules. Time-lapse imaging of EB3-GFP (green fluorescent protein)-labeled microtubule plus-ends demonstrates that Wnt3a regulates microtubule directionality, resulting in microtubule looping, growth cone pausing, and remodeling. Analyses of Dishevelled-1 (Dvl1) mutant neurons demonstrate that Dvl1 is required for Wnt-mediated microtubule reorganization and axon remodeling. Wnt signaling directly affects the microtubule cytoskeleton by unexpectedly inducing adenomatous polyposis coli (APC) loss from microtubule plus-ends. Consistently, short hairpin RNA knockdown of APC mimics Wnt3a function. Together, our findings define APC as a key Wnt signaling target in the regulation of microtubule growth direction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据