4.7 Article

Selectivity for Grasp in Local Field Potential and Single Neuron Activity Recorded Simultaneously from M1 and F5 in the Awake Macaque Monkey

期刊

JOURNAL OF NEUROSCIENCE
卷 28, 期 43, 页码 10961-10971

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1956-08.2008

关键词

macaque; motor cortex; premotor; visual motion; beta; gamma; spike trains

资金

  1. Wellcome Trust

向作者/读者索取更多资源

The selectivity for object-specific grasp in local field potentials (LFPs) was investigated in two awake macaque monkeys trained to observe, reach out, grasp and hold one of six objects presented in a pseudorandom order. Simultaneous, multiple electrode recordings were made from the hand representations of primary motor cortex (M1) and ventral premotor cortex (area F5). LFP activity was well developed during the observation and hold periods of the task, especially in the beta-frequency range (15-30 Hz). Selectivity of LFP activity for upcoming grasp was rare in the observation period, but common during stable grasp. The majority of M1 (90 of 92) and F5 (81 of 97) sites showed selectivity for at least one frequency, which was maximal in the beta range but also present at higher frequencies (30-50 Hz). When the LFP power associated with grasp of a specific object was large in the beta-frequency range, it was usually of low power in the higher 30-50 Hz range, and vice-versa. Simple hook grips involving flexion of one or more fingers were associated with large beta power, whereas more complex grips involving the thumb (e. g., precision grip) were associated with small beta power. At many M1 sites, there was a highly significant inverse relationship between the tuning of spikes (including those of identified pyramidal tract neurons) and beta-range LFP for different grasps, whereas a positive correlation was found at higher frequencies (30-50 Hz). High levels of beta LFP and low pyramidal cell spike rate may reflect a common mechanism used to control motor set during different types of grasp.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据