4.4 Article

Estimating the sensorimotor components of cybersickness

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 120, 期 5, 页码 2201-2217

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00477.2018

关键词

balance control; perception; self-motion; vection; virtual reality

资金

  1. Ontario Research Fund
  2. Canadian Foundation for Innovation John R. Evans Leaders Fund [32618]
  3. Natural Sciences and Engineering Research Council of Canada [RGPIN-05435-2014]

向作者/读者索取更多资源

The user base of the virtual reality (VR) medium is growing, and many of these users will experience cybersickness. Accounting for the vast interindividual variability in cybersickness forms a pivotal step in solving the issue. Most studies of cybersickness focus on a single factor (e.g., balance, sex, or vection), while other contributors are overlooked. Here, we characterize the complex relationship between cybersickness and several measures of sensorimotor processing. In a single session, we conducted a battery of tests of balance control. vection responses, and vestibular sensitivity to self-motion. Following this, we measured cybersickness after VR exposure. We constructed a principal components regression model using the measures of sensorimotor processing. The model significantly predicted 37% of the variability in cybersickness measures, with 16% of this variance being accounted for by a principal component that represented balance control measures. The strongest predictor was participants' sway path length during vection, which was inversely related to cybersickness [r(28) = -0.53, P = 0.002] and uniquely accounted for 75% of the variance in cybersickness scores across participants. Vection strength reports and measures of vestibular sensitivity were not significant predictors of cybersickness. We discuss the possible role of sensory reweighting in cybersickness that is suggested by these results, and we identify other factors that may account for the remaining variance in cybersickness. The results reiterate that the relationship between balance control and cybersickness is anything but straightforward. NEW & NOTEWORTHY The advent of consumer virtual reality provides a pressing need for interventions that combat sickness in simulated environments (cybersickness). This research builds on multiple theories of cybersickness etiology to develop a predictive model that distinguishes between individuals who are/are not likely to experience cybersickness. In the future this approach can be adapted to provide virtual reality users with curated content recommendations based on more efficient measurements of sensorimotor processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据