4.4 Article

Spatiotemporal control of interlimb coordination during transverse split-belt locomotion with 1:1 or 2:1 coupling patterns in intact adult cats

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 112, 期 8, 页码 2006-2018

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00236.2014

关键词

locomotion; interlimb coordination; transverse split belt

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Fonds de recherche du Quebec-Nature et technologies
  3. Discovery Grant

向作者/读者索取更多资源

Interlimb coordination must be flexible to adjust to an ever-changing environment. Here adjustments in interlimb coordination were quantified during tied-belt (equal speed of the fore- and hindlimbs) and transverse split-belt (unequal speed of the fore- and hindlimbs) locomotion in five intact adult cats. Cats performed tied-belt locomotion at 0.4 m/s and 0.8 m/s. For transverse split-belt locomotion, the forelimbs stepped at 0.4 m/s and 0.8 m/s while the hindlimbs stepped at 0.8 m/s (4F8H condition) and 0.4 m/s (8F4H condition), respectively. In the 8F4H condition, the forelimbs could take two steps within one hindlimb cycle, or a 2: 1 forelimb-hindlimb relationship. The sequence of limbs contacting the ground and the duration of support periods were differentially modified if the forelimbs stepped faster or slower than the hindlimbs. During transverse split-belt locomotion, the hindlimbs performed longer strides when the forelimbs took shorter strides. In the 8F4H condition with a 2:1 forelimb-hindlimb relationship, phase and gap intervals for the first and second steps were found around certain values and were not randomly distributed, indicating that a new coupling pattern was established. However, temporal and spatial coordination indexes revealed that bilateral coordination between hindlimbs was less accurate and more variable with a 2: 1 coupling pattern. Importantly, the animals did not stumble, indicating that spatial and temporal adjustments in interlimb coordination allowed the animals to maintain dynamic stability. The results provide a better understanding of the spatiotemporal adjustments that take place among the four limbs during locomotion when interlimb coordination is challenged.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据