4.4 Article

Activity in mouse pedunculopontine tegmental nucleus reflects action and outcome in a decision-making task

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 110, 期 12, 页码 2817-2829

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00464.2013

关键词

pedunculopontine tegmental nucleus; decision making; basal ganglia; sensorimotor

资金

  1. National Institute of Neurological Disorders and Stroke [R01 NS079518]
  2. Boettcher Foundation's Webb-Waring Biomedical Research Award

向作者/读者索取更多资源

Recent studies across several mammalian species have revealed a distributed network of cortical and subcortical brain regions responsible for sensorimotor decision making. Many of these regions have been shown to be interconnected with the pedunculopontine tegmental nucleus (PPTg), a brain stem structure characterized by neuronal heterogeneity and thought to be involved in several cognitive and behavioral functions. However, whether this structure plays a general functional role in sensorimotor decision making is unclear. We hypothesized that, in the context of a sensorimotor task, activity in the PPTg would reflect task-related variables in a similar manner as do the cortical and subcortical regions with which it is anatomically associated. To examine this hypothesis, we recorded PPTg activity in mice performing an odor-cued spatial choice task requiring a stereotyped leftward or rightward orienting movement to obtain a reward. We studied single-neuron activity during epochs of the task related to movement preparation, execution, and outcome (i.e., whether or not the movement was rewarded). We found that a substantial proportion of neurons in the PPTg exhibited direction-selective activity during one or more of these epochs. In addition, an overlapping population of neurons reflected movement direction and reward outcome. These results suggest that the PPTg should be considered within the network of brain areas responsible for sensorimotor decision making and lay the foundation for future experiments to examine how the PPTg interacts with other regions to control sensory-guided motor output.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据