4.4 Article

Evidence for high-fidelity timing-dependent synaptic plasticity of human motor cortex

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 109, 期 1, 页码 106-112

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00584.2011

关键词

synaptic plasticity; timing dependent; human motor cortex; TMS

资金

  1. Neurotrauma Research Program of Western Australia
  2. Neuromuscular Foundation of Western Australia

向作者/读者索取更多资源

Cash RF, Mastaglia FL, Thickbroom GW. Evidence for high-fidelity timing-dependent synaptic plasticity of human motor cortex. J Neurophysiol 109: 106-112, 2013. First published October 17, 2012; doi:10.1152/jn.00584.2011.-A single transcranial magnetic stimulation (TMS) pulse typically evokes a short series of spikes in corticospinal neurons [known as indirect (I)-waves] which are thought to arise from transynaptic input. Delivering a second pulse at interpulse intervals (IPIs) corresponding to the timing of these I-waves leads to a facilitation of the response, and if stimulus pairs are delivered repeatedly, a persistent LTP-like increase in excitability can occur. This has been demonstrated at an IPI of 1.5 ms, which corresponds to the first I-wave interval, in an intervention referred to as ITMS (I-wave TMS), and it has been argued that this may have similarities with timing-dependent plasticity models. Consequently, we hypothesized that if the second stimulus is delivered so as not to coincide with I-wave timing, it should lead to LTD. We performed a crossover study in 10 subjects in which TMS doublets were timed to coincide (1.5-ms IPI, ITMS1.5) or not coincide (2-ms IPI, ITMS2) with I-wave firing. Single pulse motor-evoked potential (MEP) amplitude, resting motor threshold (RMT), and short-interval cortical inhibition (SICI) were measured from the first dorsal interosseous (FDI) muscle. After ITMS1.5 corticomotor excitability was increased by similar to 60% for 15 min (P < 0.05) and returned to baseline by 20 min. Increasing the IPI by just 500 mu s to 2 ms reversed the aftereffect, and MEP amplitude was significantly reduced (similar to 35%, P < 0.05) for 15 min before returning to baseline. This reduction was not associated with an increase in SICI, suggesting a reduction in excitatory transmission rather than an increase in inhibitory efficacy. RMT also remained unchanged, suggesting that these changes were not due to changes in membrane excitability. Amplitude-matching ITMS2 did not modulate excitability. The results are consistent with timing-dependent synaptic LTP/D-like effects and suggest that there are plasticity mechanisms operating in the human motor cortex with a temporal resolution of the order of a few hundreds of microseconds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据