4.4 Article

Serotonin modulates the population activity profile of olfactory bulb external tufted cells

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 107, 期 1, 页码 473-483

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00741.2011

关键词

intrinsic excitability; transient receptor potential channels; olfaction; glomerular circuits; excitatory modulation

资金

  1. NIH National Institute on Deafness and Other Communication Disorders (NIDCD) [5-R01-DC-005676-13]
  2. NATIONAL INSTITUTE ON DEAFNESS AND OTHER COMMUNICATION DISORDERS [R01DC010915, R01DC005676] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Liu S, Aungst JL, Puche AC, Shipley MT. Serotonin modulates the population activity profile of olfactory bulb external tufted cells. J Neurophysiol 107: 473-483, 2012. First published October 19, 2011; doi:10.1152/jn.00741.2011.-Serotonergic neurons in the raphe nuclei constitute one of the most prominent neuromodulatory systems in the brain. Projections from the dorsal and median raphe nuclei provide dense serotonergic innervation of the glomeruli of olfactory bulb. Odor information is initially processed by glomeruli, thus serotonergic modulation of glomerular circuits impacts all subsequent odor coding in the olfactory system. The present study discloses that serotonin (5-HT) produces excitatory modulation of external tufted (ET) cells, a pivotal neuron in the operation of glomerular circuits. The modulation is due to a transient receptor potential (TRP) channel-mediated inward current induced by activation of 5-HT(2A) receptors. This current produces membrane depolarization and increased bursting frequency in ET cells. Interestingly, the magnitude of the inward current and increased bursting inversely correlate with ET cell spontaneous (intrinsic) bursting frequency: slower bursting ET cells are more strongly modulated than faster bursting cells. Serotonin thus differentially impacts ET cells such that the mean bursting frequency of the population is increased. This centrifugal modulation could impact odor processing by: 1) increasing ET cell excitatory drive on inhibitory neurons to increase presynaptic inhibition of olfactory sensory inputs and postsynaptic inhibition of mitral/tufted cells; and/or 2) coordinating ET cell bursting with exploratory sniffing frequencies (5-8 Hz) to facilitate odor coding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据