4.4 Article

Partial Disinhibition Is Required for Transition of Stimulus-Induced Sharp Wave-Ripple Complexes Into Recurrent Epileptiform Discharges in Rat Hippocampal Slices

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 105, 期 1, 页码 172-187

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00186.2010

关键词

-

资金

  1. Bernstein Center/Deutsche Forschungsgemeinschaft Research Training Group through the NeuroCure cluster [GRK 1123]
  2. Hertie Foundation
  3. European Union Epicure

向作者/读者索取更多资源

Liotta A, Caliskan G, ul Haq R, Hollnagel JO, Rosler A, Heinemann U, Behrens CJ. Partial disinhibition is required for transition of stimulus-induced sharp wave-ripple complexes into recurrent epileptiform discharges in rat hippocampal slices. J Neurophysiol 105: 172-187, 2011. First published September 29, 2010; doi:10.1152/jn.00186.2010. Sharp wave-ripple complexes (SPW-Rs) in the intact rodent hippocampus are characterized by slow field potential transients superimposed by close to 200-Hz ripple oscillations. Similar events have been recorded in hippocampal slices where SPW-Rs occur spontaneously or can be induced by repeated application of high-frequency stimulation, a standard protocol for induction of long-lasting long-term potentiation. Such stimulation is reminiscent of protocols used to induce kindling epilepsy and ripple oscillations may be predictive of the epileptogenic zone in temporal lobe epilepsy. In the present study, we investigated the relation between recurrent epileptiform discharges (REDs) and SPW-Rs by studying effects of partial removal of inhibition. In particular, we compared the effects of nicotine, low-dose bicuculline methiodide (BMI), and elevated extracellular potassium concentration ([K+](o)) on induced SPW-Rs. We show that nicotine dose-dependently transformed SPW-Rs into REDs. This transition was associated with reduced inhibitory conductance in CA3 pyramidal cells. Similar results were obtained from slices where the GABAergic conductance was reduced by application of low concentrations of BMI (1-2 mu M). In contrast, sharp waves were diminished by phenobarbital. Elevating [K+](o) from 3 to 8.5 mM did not transform SPW-Rs into REDs but significantly increased their incidence and amplitude. Under these conditions, the equilibrium potential for inhibition was shifted in depolarizing direction, whereas inhibitory conductance was significantly increased. Interestingly, the propensity of elevated [K+](o) to induce seizure-like events was reduced in slices where SPW-Rs had been induced. In conclusion, recruitment of inhibitory cells during SPW-Rs may serve as a mechanism by which hyperexcitation and eventually seizure generation might be prevented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据