4.4 Article

Current Source Density Profiles of Stimulus-Specific Adaptation in Rat Auditory Cortex

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 102, 期 3, 页码 1483-1490

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00240.2009

关键词

-

资金

  1. Engineering and Physical Sciences Research Council Colamn [EP/C010841/1]
  2. European Union FP6 Noveltune [LSH-CT-2006-037378]

向作者/读者索取更多资源

Szymanski FD, Garcia-Lazaro JA, Schnupp JWH. Current source density profiles of stimulus-specific adaptation in rat auditory cortex. J Neurophysiol 102: 1483-1490, 2009. First published July 1, 2009; doi:10.1152/jn.00240.2009. Neurons in primary auditory cortex (A1) are known to exhibit a phenomenon known as stimulus-specific adaptation (SSA), which means that, when tested with pure tones, they will respond more strongly to a particular frequency if it is presented as a rare, unexpected oddball stimulus than when the same stimulus forms part of a series of common, standard stimuli. Although SSA has occasionally been observed in midbrain neurons that form part of the paraleminscal auditory pathway, it is thought to be weak, rare, or nonexistent among neurons of the leminscal pathway that provide the main afferent input to A1, so that SSA seen in A1 is likely generated within A1 by local mechanisms. To study the contributions that neural processing within the different cytoarchitectonic layers of A1 may make to SSA, we recorded local field potentials in A1 of the rat in response to standard and oddball tones and subjected these to current source density analysis. Although our results show that SSA can be observed throughout all layers of A1, right from the earliest part of the response, there are nevertheless significant differences between layers, with SSA becoming significantly stronger as stimulus-related activity passes from the main thalamorecipient layers III and IV to layer V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据