4.4 Article

Genioglossus and Intrinsic Electromyographic Activities in Impeded and Unimpeded Protrusion Tasks

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 101, 期 1, 页码 276-282

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.91065.2008

关键词

-

资金

  1. National Institute on Deafness and Other Communication Disorders (NIDCD) [K23-DC-007597]
  2. NATIONAL INSTITUTE ON DEAFNESS AND OTHER COMMUNICATION DISORDERS [K23DC007597] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Pittman LJ, Bailey EF. Genioglossus and intrinsic electromyographic activities in impeded and unimpeded protrusion tasks. J Neurophysiol 101: 276-282, 2009. First published November 5, 2008; doi:10.1152/jn.91065.2008. Eight muscles invest the human tongue: four extrinsic muscles have external origins and insert into the tongue body and four intrinsic muscles originate and terminate within the tongue. Previously, we noted minimal activation of the genioglossus tongue muscle during impeded protrusion tasks (i.e., having subjects push the tongue against a force transducer), suggesting that other muscles play a role in the production of tongue force. Accordingly, we sought to characterize genioglossus tongue muscle activities during impeded and unimpeded protrusion tasks (i.e., having subjects slowly and smoothly move the tongue out of their mouth). Electromyographic (EMG) and single motor-unit potentials of the extrinsic genioglossus muscle were recorded with tungsten microelectrodes and EMG activities of intrinsic tongue muscles were recorded with hook-wire electrodes inserted into the anterior tongue body. Tongue position was detected by an isotonic transducer coupled to the tongue tip. Protrusive force was detected by a force transducer attached to a rigid bar. Genioglossus and intrinsic tongue muscles were simultaneously active in both impeded and unimpeded protrusion tasks. Genioglossus whole muscle EMG and single motor-unit activities changed faithfully as a function of tongue position, with increased discharge associated with protrusion and decreased discharge associated with retraction back to the rest position. In contrast, during the impeded protrusion task drive the genioglossus muscle remained constant as protrusion force increased. Conversely, intrinsic tongue muscle activities appropriately followed changes in both tongue position and force. Importantly, we observed significantly higher levels of intrinsic muscle activity in the impeded protrusion task. These observations suggest that protrusion of the human tongue requires activation of the genioglossus and intrinsic protrudor muscles, with the former more important for establishing anterior-posterior tongue location and the latter playing a greater role in the generation of protrusive force. A biomechanical model of these actions is provided and discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据