4.4 Article

Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 99, 期 2, 页码 939-949

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.01225.2007

关键词

-

向作者/读者索取更多资源

In the present study we examined the performance variability of a group of 13 subjects in eight different tasks that involved the processing of temporal intervals in the subsecond range. These tasks differed in their sensorimotor processing (S; perception vs. production), the modality of the stimuli used to define the intervals (M; auditory vs. visual), and the number of intervals (N; one or four). Different analytical techniques were used to determine the existence of a central or distributed timing mechanism across tasks. The results showed a linear increase in performance variability as a function of the interval duration in all tasks. However, this compliance of the scalar property of interval timing was accompanied by a strong effect of S, N, and M and the interaction between these variables on the subjects' temporal accuracy. Thus the performance variability was larger not only in perceptual tasks than that in motor-timing tasks, but also using visual rather than auditory stimuli, and decreased as a function of the number of intervals. These results suggest the existence of a partially overlapping distributed mechanism underlying the ability to quantify time in different contexts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据