4.4 Article

Layer-specific generation and propagation of seizures in slices of developing neocortex: Role of excitatory GABAergic Synapses

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 100, 期 2, 页码 620-628

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.90403.2008

关键词

-

向作者/读者索取更多资源

The neonatal period is critical for seizure susceptibility, and neocortical networks are central in infantile epilepsies. We report that application of 4-aminopyridine (4-AP) to immature (P6-P9) neocortical slices generates layer-specific interictal seizures (IISs) that transform after recurrent seizures to ictal seizures (ISs). During IISs, cell-attached recordings show action potentials in interneurons and pyramidal cells in L5/6 and interneurons but not pyramidal neurons in L2/3. However, L2/3 pyramidal neurons also fire during ISs. Using single N-methylD-aspartate (NMDA) channel recordings for measuring the cell resting potential (E-m), we show that transition from IISs to ISs is associated with a gradual E-m depolarization of L2/3 and L5/6 pyramidal neurons that enhances their excitability. Bumetanide, a NKCC1 co-transporter antagonist, inhibits generation of IISs and prevents their transformation to ISs, indicating the role excitatory GABA in epilepsies. Therefore deep layer neurons are more susceptible to seizures than superficial ones. The initiating phase of seizures is characterized by IISs generated in L5/6 and supported by activation of both L5/6 interneurons and pyramidal cells. IISs propagate to L2/3 via activation of L2/3 interneurons but not pyramidal cells, which are mostly quiescent at this phase. In superficial layers, a persistent increase in excitability of pyramidal neurons caused by E-m depolarization is associated with a transition from largely confined GABAergic IIS to ictal events that entrain the entire neocortex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据