4.4 Article

Early postnatal development of reciprocal Ia inhibition in the murine spinal cord

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 100, 期 1, 页码 185-196

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.90354.2008

关键词

-

资金

  1. NINDS NIH HHS [R01 NS024373, R01 NS-24373] Funding Source: Medline

向作者/读者索取更多资源

The pathway mediating reciprocal inhibition from muscle spindle afferents (Ia axons) to motoneurons (MNs) supplying antagonist muscles has been well studied in adult cats, but little is known about how this disynaptic pathway develops. As a basis for studying its development, we characterized this pathway in mice during the first postnatal week, focusing on the projection of quadriceps (Q) Ia axons to posterior biceps-semitendinosis (PBSt) MNs via Ia inhibitory interneurons. Synaptic potentials in PBSt MNs evoked by Q nerve stimulation are mediated disynaptically and are blocked by strychnine, implying that glycine is the major inhibitory transmitter as in adult cats. The specificity of neuronal connections in this reflex pathway is already high at birth; Q afferents evoke inhibitory synaptic potentials in PBSt MNs, but afferents supplying the adductor muscle do not. Similar to this disynaptic pathway in cats, Renshaw cells inhibit the interposed Ia interneurons, as they reduce the disynaptic input from Q axons but do not inhibit PBSt MNs directly. Reciprocal inhibition functionally inhibits the monosynaptic excitatory reflex in PBSt MNs by P3, but this functional inhibition is weak at P1. Finally, deletion of the transcription factor Pax6, which is required for the development of V1-derived Renshaw cells, does not block development of this pathway. This suggests either that Pax6 is not required for the phenotypic development of all V1-derived spinal interneurons or that these inhibitory interneurons are not derived from V1 precursors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据