4.4 Article

Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 99, 期 3, 页码 1127-1136

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.01232.2007

关键词

-

向作者/读者索取更多资源

The voltage-clamp technique is applicable only to spherical cells. In nonspherical cells, such as neurons, the membrane potential is not clamped distal to the voltage-clamp electrode. This means that the current recorded by the voltage-clamp electrode is the sum of the local current and of axial currents from locations experiencing different membrane potentials. Furthermore, voltage-gated currents recorded from a nonspherical cell are, by definition, severely distorted due to the lack of space clamp. Justifications for voltage clamping in nonspherical cells are, first, that the lack of space clamp is not severe in neurons with short dendrites. Second, passive cable theory may be invoked to justify application of voltage clamp to branching neurons, suggesting that the potential decay is sufficiently shallow to allow spatial clamping of the neuron. Here, using numerical simulations, we show that the distortions of voltage-gated K+ and Ca2+ currents are substantial even in neurons with short dendrites. The simulations also demonstrate that passive cable theory cannot be used to justify voltage clamping of neurons due to significant shunting to the reversal potential of the voltage-gated conductance during channel activation. Some of the predictions made by the simulations were verified using somatic and dendritic voltage-clamp experiments in rat somatosensory cortex. Our results demonstrate that voltage-gated K+ and Ca2+ currents recorded from branching neurons are almost always severely distorted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据