4.7 Article

Multicellular models of Friedreich ataxia

期刊

JOURNAL OF NEUROLOGY
卷 256, 期 -, 页码 18-24

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00415-009-1004-1

关键词

mouse; C. elegans; Drosophila; frataxin; disease pathophysiology; pre-clinical drug evaluation; iron-sulphur; mitochondria

向作者/读者索取更多资源

Patients with Friedreich ataxia (FRDA) have severely reduced levels of the mitochondrial protein frataxin, which results from a large GAA triplet-repeat expansion within the frataxin gene (FXN). High evolutionary conservation of frataxin across species has enabled the development of disease models of FRDA in various unicellular and multicellular organisms. Mouse models include classical knockout models, in which the Fxn gene is constitutively inactivated, and knock-in models, in which a GAA repeat mutation or the conditional allele is inserted into the genome. Recently, humanised GAA repeat expansion mouse models were obtained by combining the constitutive knockout with the transgenic expression of a yeast artificial chromosome carrying the human FRDA locus. In lower organisms such as Caenorhabditis elegans and Drosophila, straightforward and conditional RNA interference technology has provided an easy way to knock down frataxin expression. Conditional mouse models have been used for pre-clinical trials of potential therapeutic agents, including idebenone, MnTBAP (a superoxide dismutase mimetic), and iron chelators. Various models of FRDA have shown that different, even opposite, phenotypes can be observed, depending on the level of frataxin expression. Additional studies with animal models will be essential for an enhanced understanding of the disease pathophysiology and for the development of better therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据