4.5 Article

Anti-Inflammatory Efficacy of Dexamethasone and Nrf2 Activators in the CNS Using Brain Slices as a Model of Acute Injury

期刊

JOURNAL OF NEUROIMMUNE PHARMACOLOGY
卷 7, 期 1, 页码 266-278

出版社

SPRINGER
DOI: 10.1007/s11481-011-9338-8

关键词

Microglia; Cerebral cortex; Dexamethasone; Explant; Nrf2 activation; Triterpenoid

资金

  1. Department of Pathology, Dartmouth Medical School
  2. Reata Pharmaceutical
  3. ALS Center at Dartmouth Hitchcock Medical Center

向作者/读者索取更多资源

Limiting excessive production of inflammatory mediators is an effective therapeutic strategy for many diseases. It's also a promising remedy for neurodegenerative diseases and central nervous system (CNS) injuries. Glucocorticoids are valuable anti-inflammatory agents, but their use is constrained by adverse side-effects. Activators of NF-E2-related factor-2 (Nrf2) signaling represent an attractive anti-inflammatory alternative. In this study, dexamethasone, a synthetic glucocorticoid, and several molecular activators of Nrf2 were evaluated for efficacy in slices of cerebral cortex derived from adult SJL/J mice. Cortical explants increased expression of IL-1 beta and TNF-alpha mRNAs in culture within 5 h of sectioning. This expression was inhibited with dexamethasone in the explant medium or injected systemically in mice before sectioning. Semi-synthetic triterpenoid (SST) derivatives, potent activators of the Nrf2 pathway, demonstrated fast-acting anti-inflammatory activity in microglia cultures, but not in the cortical slice system. Quercetin, luteolin, and dimethyl fumarate were also evaluated as molecular activators of Nrf2. While expression of inflammatory mediators in microglia cultures was inhibited, these compounds did not demonstrate anti-inflammatory efficacy in cortical slices. In conclusion, brain slices were amenable to pharmacological modification as demonstrated by anti-inflammatory activity with dexamethasone. The utilization of Nrf2 activators to limit inflammatory mediators within the CNS requires further investigation. Inactivity in CNS tissue, however, suggests their safe use without neurological side-effects in treating non-CNS disorders. Short-term CNS explants may provide a more accurate model of in vivo conditions than microglia cultures since the complex tissue microenvironment is maintained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据