4.2 Article

Leucine Improves Glucose and Lipid Status in Offspring from Obese Dams, Dependent on Diet Type, but not Caloric Intake

期刊

JOURNAL OF NEUROENDOCRINOLOGY
卷 24, 期 10, 页码 1356-1364

出版社

WILEY
DOI: 10.1111/j.1365-2826.2012.02339.x

关键词

maternal obesity; leucine; glucose tolerance test; lipids; mammalian target of rapamycin

资金

  1. Faculty of Science, University of Technology, Sydney
  2. Faculty of Medicine, University of New South Wales
  3. Diabetes Australia Research Trust

向作者/读者索取更多资源

Previously, we showed that offspring from obese rat dams were hyperphagic, with increased adiposity, hyperlipidaemia and glucose intolerance associated with increased orexigenic neuropeptide expression after fasting. Mammalian target of rapamycin (mTOR) can inhibit food intake through a hypothalamic action. As we previously showed that maternal obesity down-regulated hypothalamic mTOR, in the present study, we hypothesised that dietary leucine supplementation would activate hypothalamic mTOR to reduce food intake, thus limiting metabolic disorders in offspring from obese dams, regardless of postweaning diet. Obesity was induced in SpragueDawley females by high-fat diet (HFD) for 5 weeks before mating, throughout gestation and lactation. Male pups from HFD-fed mothers were weaned onto chow or HFD; within each dietary group, half were supplied with leucine via drinking water (1.5%) versus water control for 10 weeks. Those from chow-fed mothers were fed chow and water. Maternal obesity led to increased adiposity in chow-fed offspring. Postweaning HFD consumption exaggerated adiposity, hyperglycaemia, hyperinsulinaemia and hyperlipidaemia. Supplementation with leucine doubled leucine intake and increased hypothalamic mTOR activation; however, appetite regulation was not affected. A reduction in blood lipid levels was observed in offspring regardless of diet, as well as improved glucose tolerance in HFD-fed rats. In HFD-fed rats, up-regulated carnitine palmitoyl-transferase-1 and peroxisome-proliferator-activated receptor-? coactivator-1a in muscle and glucose transporter 4 in fat suggested that leucine improved peripheral fat oxidation and glucose transport. Leucine is able to improve peripheral glucose and lipid metabolism independent of appetite and weight regulation, suggesting its potential application in the management of metabolic disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据