4.5 Article

Cathepsin C modulates myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis

期刊

JOURNAL OF NEUROCHEMISTRY
卷 148, 期 3, 页码 413-425

出版社

WILEY
DOI: 10.1111/jnc.14581

关键词

cathepsin C; cystatin F; demyelination; experimental autoimmune encephalomyelitis (EAE); multiple sclerosis

资金

  1. Thailand Research Fund under the Royal Golden Jubilee-Ph.D. Scholarship
  2. Mahidol University
  3. Japan Society for the Promotion of Science (JSPS) [25117001]
  4. [23110521]

向作者/读者索取更多资源

Multiple sclerosis (MS) is an autoimmune disease characterized by immune-mediated inflammation, which attacks the myelin sheath. MS pursues a relapsing and remitting course with varying intervals between symptoms. The main clinical pathological features include inflammation, myelin sheath destruction and plaque formation in the central nervous system (CNS). We previously reported that cystatin F (CysF) expression is induced in demyelinating lesions that are accompanied by active remyelination (referred to as shadow plaques) but is down-regulated in chronic demyelinated lesions (plaques) in the spinal cord of MS patients and in several murine models of demyelinating disease. CysF is a cathepsin protease inhibitor whose major target is cathepsin C (CatC), which is co-expressed in demyelinating regions in Plp(4e/-) mice, a model of chronic demyelination. Here, we report the time course of CatC and CysF expression and describe the symptoms in a mouse experimental autoimmune encephalomyelitis (EAE) model using CatC knockdown (KD) and CatC over-expression (OE) mice. In myelin oligodendrocyte glycoprotein (MOG)-EAE, CatC positive cells were found to infiltrate the CNS at an early stage prior to any clinical signs, in comparison to WT mice. CysF expression was not observed at this early stage, but appeared later within shadow plaques. CatC expression was found in chronic demyelinated lesions but was not associated with CysF expression, and CatCKD EAE mouse showed delayed demyelination. Whereas, CatCOE in microglia significantly increased severity of demyelination in the MOG-EAE model. Thus, these results demonstrate that CatC plays a major role in MOG-EAE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据