4.5 Article

Destabilization of survival factor MEF2D mRNA by neurotoxin in models of Parkinson's disease

期刊

JOURNAL OF NEUROCHEMISTRY
卷 130, 期 5, 页码 720-728

出版社

WILEY-BLACKWELL
DOI: 10.1111/jnc.12765

关键词

MPTP/MPP+; mRNA; Parkinson's disease; transcription factor myocyte enhancer factor 2D

向作者/读者索取更多资源

Progressive loss of dopaminergic (DA) neurons in the substantial nigra pars compacta (SNc) is an important pathological feature in Parkinson's disease (PD). Loss of transcription factor myocyte enhancer factor 2D (MEF2D), a key neuronal survival factor, has been shown to underlie the loss of DA neurons in SNc and the pathogenic process of PD. It is known that PD-associated neurotoxins reduce the level of MEF2D protein to trigger neuronal death. Although neurotoxins clearly destabilize MEF2D by post-translational mechanisms, it is not known whether regulation of MEF2D mRNA contributes to neurotoxin-induced decrease in MEF2D protein. In this work, we showed that MPP+, the toxic metabolite of MPTP, caused a significant decrease in the half-life and total level of MEF2D mRNA in a DA neuronal cell line, SN4741 cells. Quantitative PCR analysis of the SNc DA neurons captured by immune-laser capture microdissection showed that exposure to MPTP led to a marked reduction in the level of MEF2D mRNA in SNc DA neurons compared to controls. Down-regulation of MEF2D mRNA alone reduced the viability of SN4741 cells and sensitized the cells to MPP+-induced toxicity. These results suggest that destabilization and reduction in MEF2D mRNA is in part responsible for neurotoxin-induced decrease in MEF2D protein and neuronal viability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据