4.5 Article

The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation

期刊

JOURNAL OF NEUROCHEMISTRY
卷 124, 期 3, 页码 310-322

出版社

WILEY
DOI: 10.1111/j.1471-4159.2012.07913.x

关键词

human embryonic stem cells; prion protein; self-renewal; stem cell differentiation; stem cell fate

资金

  1. Maryland Stem Cell Commission
  2. NIH [NS045585]

向作者/读者索取更多资源

Prion protein (PrPC), is a glycoprotein that is expressed on the cell surface. The current study examines the role of PrPC in early human embryogenesis using human embryonic stem cells (hESCs) and tetracycline-regulated lentiviral vectors that up-regulate or suppresses PrPC expression. Here, we show that expression of PrPC in pluripotent hESCs cultured under self-renewal conditions induced cell differentiation toward lineages of three germ layers. Silencing of PrPC in hESCs undergoing spontaneous differentiation altered the dynamics of the cell cycle and changed the balance between the lineages of the three germ layers, where differentiation toward ectodermal lineages was suppressed. Moreover, over-expression of PrPC in hESCs undergoing spontaneous differentiation inhibited differentiation toward lineages of all three germ layers and helped to preserve high proliferation activity. These results illustrate that PrPC is involved in key activities that dictate the status of hESCs including regulation of cell cycle dynamics, controlling the switch between self-renewal and differentiation, and determining the fate of hESCs differentiation. This study suggests that PrPC is at the crossroads of several signaling pathways that regulate the switch between preservation of or departure from the self-renewal state, control cell proliferation activity, and define stem cell fate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据