4.5 Article

Focal adhesion kinase can play unique and opposing roles in regulating the morphology of differentiating oligodendrocytes

期刊

JOURNAL OF NEUROCHEMISTRY
卷 115, 期 1, 页码 269-282

出版社

WILEY
DOI: 10.1111/j.1471-4159.2010.06926.x

关键词

cytoskeleton; extracellular matrix; focal adhesions; multiple sclerosis; myelin; oligodendrocyte

资金

  1. NIH-NINDS Center [5P30NS047463]
  2. National Multiple Sclerosis Society
  3. Predoctoral Kirschstein-NRSA

向作者/读者索取更多资源

P>During development cells of the oligodendrocyte lineage undergo significant changes in morphology when they differentiate from migratory oligodendrocyte progenitors, which are mostly bipolar, into post-migratory pre-myelinating oligodendrocytes, which extend complex and expanded process networks, and then finally into mature oligodendrocytes, which generate myelin sheaths required for efficient signal propagation within the nervous system. This extensive morphological remodeling occurs in the context of a complex extracellular environment and requires significant rearrangement of the cell's cytoskeleton. The molecular mechanisms underlying this intricate integration of signals, however, remain poorly understood. A key regulator of extracellular matrix to cytoskeleton signaling is the non-receptor tyrosine kinase FAK (focal adhesion kinase). Here, we report that FAK can regulate the morphology of differentiating post-migratory pre-myelinating oligodendrocytes in a unique and opposing fashion that is dependent on the nature of the extracellular matrix and mediated largely by FAK's catalytic activity. More specifically, FAK was found to restrict process network expansion in the presence of fibronectin but to promote morphological maturation in the presence of laminin-2. In addition, FAK's restraining role predominated for postnatal day 3-derived cells, while its maturation promoting role prevailed for postnatal day 5-derived cells. Taken together, our findings reveal a complex role of FAK in regulating the morphology of post-migratory pre-myelinating oligodendrocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据