4.5 Article

Real-time visualization of cytoplasmic calpain activation and calcium deregulation in acute glutamate excitotoxicity

期刊

JOURNAL OF NEUROCHEMISTRY
卷 110, 期 3, 页码 990-1004

出版社

WILEY
DOI: 10.1111/j.1471-4159.2009.06194.x

关键词

apoptosis; calpeptin; excitotoxicity; necrosis; NMDA; sodium-calcium exchanger

资金

  1. NIH [PL1 AG032118, P30 AG025708, NS054764]
  2. Buck Institute

向作者/读者索取更多资源

Although calpain (EC 3.4.22) protease activation was suggested to contribute to excitotoxic delayed calcium deregulation (DCD) via proteolysis of Na+/Ca2+ exchanger 3 (NCX3), cytoplasmic calpain activation in relation to DCD has never been visualized in real-time. We employed a calpain fluorescence resonance energy transfer substrate to simultaneously image calpain activation and calcium deregulation in live cortical neurons. A calpain inhibitor-sensitive decline in fluorescence resonance energy transfer was observed at 39 +/- 5 min after the occurrence of DCD in neurons exposed to continuous glutamate (100 mu M). Inhibition of calpain by calpeptin did not delay the onset of DCD, recovery from DCD-like reversible calcium elevations, or cell death despite inhibiting alpha-spectrin processing by > 90%. NCXs reversed during glutamate exposure, the NCX antagonist KB-R7943 prolonged the time to DCD, and significant NCX3 cleavage following 90 min of glutamate exposure was not observed. Our findings suggest that robust calpain activation associated with acute glutamate toxicity occurs only after a sustained loss in calcium homeostasis. Processing of NCX3 or other calpain substrates is unlikely to be the primary cause of acute excitotoxicity in cortical neurons. However, a role for calpain as a contributing factor or in response to milder glutamate insults is not excluded.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据