4.5 Review

Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-γ agonists in cultured hippocampal neurons

期刊

JOURNAL OF NEUROCHEMISTRY
卷 109, 期 6, 页码 1800-1811

出版社

WILEY
DOI: 10.1111/j.1471-4159.2009.06107.x

关键词

aging; Alzheimer's disease; Ca2+ signaling; diabetes; electrophysiology; neuroprotection

资金

  1. [AG029268]
  2. [NCRR-P20-RR15592]

向作者/读者索取更多资源

Type 2 diabetes mellitus is a metabolic disorder characterized by hyperglycemia and is especially prevalent in the elderly. Because aging is a risk factor for type 2 diabetes mellitus, and insulin resistance may contribute to the pathogenesis of Alzheimer's disease (AD), anti-diabetic agents (thiazolidinediones-TZDs) are being studied for the treatment of cognitive decline associated with AD. These agents normalize insulin sensitivity in the periphery and can improve cognition and verbal memory in AD patients. Based on evidence that Ca2+ dysregulation is a pathogenic factor of brain aging/AD, we tested the hypothesis that TZDs could impact Ca2+ signaling/homeostasis in neurons. We assessed the effects of pioglitazone and rosiglitazone (TZDs) on two major sources of Ca2+ influx in primary hippocampal cultured neurons, voltage-gated Ca2+ channel (VGCC) and the NMDA receptor (NMDAR). VGCC- and NMDAR-mediated Ca2+ currents were recorded using patch-clamp techniques, and Ca2+ intracellular levels were monitored with Ca2+ imaging techniques. Rosiglitazone, but not pioglitazone reduced VGCC currents. In contrast, NMDAR-mediated currents were significantly reduced by pioglitazone but not rosiglitazone. These results show that TZDs modulate Ca2+-dependent pathways in the brain and have different inhibitory profiles on two major Ca2+ sources, potentially conferring neuroprotection to an area of the brain that is particularly vulnerable to the effects of aging and/or AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据