4.5 Article

Activation of P2X(7) receptors induces CCL3 production in microglial cells through transcription factor NFAT

期刊

JOURNAL OF NEUROCHEMISTRY
卷 108, 期 1, 页码 115-125

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1471-4159.2008.05744.x

关键词

ATP; chemokine; cytokine; glia; inflammation; purinergic

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan

向作者/读者索取更多资源

Microglia are implicated as a source of diverse proinflammatory factors in the CNS. Extracellular nucleotides are well known to be potent activators of glial cells and trigger the release of cytokines from microglia through purinergic receptors. However, little is known about the role of purinoceptors in microglial chemokine release. In this study, we found that high concentrations of ATP evoked release of CC-chemokine ligand 3 (CCL3)/macrophage inflammatory protein-1 alpha from MG-5 cells, a mouse microglial cell line, and rapid up-regulation of CCL3 mRNA was elicited within 30 min of ATP stimulation. The release of CCL3 was also stimulated by 2'- and 3'-O-(4-benzoylbenzoyl) ATP, an agonist of P2X(7) receptors. Brilliant Blue G, an antagonist of P2X(7) receptors, strongly inhibited this ATP-induced CCL3 release. Similar pharmacological profile was observed in primary microglia. In MG-5 cells, ATP caused de-phosphorylation and nuclear translocation of the transcription factor nuclear factor of activated T cells (NFAT). ATP-induced NFAT de-phosphorylation was also dependent on P2X(7) receptor activation. Furthermore, ATP-induced CCL3 release and production were prevented by a selective inhibitor of NFAT. Taken together, the results of this study demonstrate an involvement of NFAT in the mechanism underlying P2X(7) receptor-mediated CCL3 release.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据