4.5 Review

Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications

期刊

JOURNAL OF NEUROCHEMISTRY
卷 111, 期 4, 页码 891-900

出版社

WILEY
DOI: 10.1111/j.1471-4159.2009.06325.x

关键词

GABA; glutamatergic hypothesis; mGluR; NMDAR; schizophrenia; treatment of schizophrenia

向作者/读者索取更多资源

Early models for the etiology of schizophrenia focused on dopamine neurotransmission because of the powerful anti-psychotic action of dopamine antagonists. Nevertheless, recent evidence increasingly supports a primarily glutamatergic dysfunction in this condition, where dopaminergic disbalance is a secondary effect. A current model for the pathophysiology of schizophrenia involves a dysfunctional mechanism by which the NMDA receptor (NMDAR) hypofunction leads to a dysregulation of GABA fast- spiking interneurons, consequently disinhibiting pyramidal glutamatergic output and disturbing the signal-to-noise ratio. This mechanism might explain better than other models some cognitive deficits observed in this disease, as well as the dopaminergic alterations and therapeutic effect of anti-psychotics. Although the modulation of glutamate activity has, in principle, great therapeutic potential, a side effect of NMDAR overactivation is neurotoxicity, which accelerates neuropathological alterations in this illness. We propose that metabotropic glutamate receptors can have a modulatory effect over the NMDAR and regulate excitotoxity mechanisms. Therefore, in our view metabotropic glutamate receptors constitute a highly promising target for future drug treatment in this disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据