4.5 Article

Recruitment of mitochondria into apoptotic signaling correlates with the presence of inclusions formed by amyotrophic lateral sclerosis-associated SOD1 mutations

期刊

JOURNAL OF NEUROCHEMISTRY
卷 108, 期 3, 页码 578-590

出版社

WILEY
DOI: 10.1111/j.1471-4159.2008.05799.x

关键词

apoptosis; mitochondria; motor neuron disease; neuroprotection; superoxide dismutase 1

资金

  1. National Health and Medical Research Council of Australia
  2. Bethlehem Griffiths Research Foundation
  3. Motor Neuron Disease Research Institute of Australia

向作者/读者索取更多资源

Mutations in Cu, Zn-superoxide dismutase 1 (SOD1) are associated with degeneration of motor neurons in the disease, familial amyotrophic lateral sclerosis. Intracellular protein inclusions containing mutant SOD1 (mSOD1) are associated with disease but it is unclear whether they are neuroprotective or cytotoxic. We report here that the formation of mSOD1 inclusions in a motor neuron-like cell line (NSC-34) strongly correlates with apoptosis via the mitochondrial death pathway. Applying confocal microscopic analyses, we observed changes in nuclear morphology and activation of caspase 3 specifically in cells expressing mSOD1 A4V or G85R inclusions. Furthermore, markers of mitochondrial apoptosis (activation and recruitment of Bax, and cytochrome c redistribution) were observed in 30% of cells bearing mSOD1 inclusions but not in cells expressing dispersed SOD1. In the presence of additional apoptotic challenges (staurosporine, etoposide, and hydrogen peroxide), cells bearing mSOD1 inclusions were susceptible to further apoptosis suggesting they were in a pro-apoptotic state, thus confirming that inclusions are linked to toxicity. Surprisingly, cells displaying dispersed SOD1 [both wildtype (WT) and mutant] were protected against apoptosis upstream of mitochondrial apoptotic signaling, induced by all agents tested. This protection against apoptosis was unrelated to SOD1 enzymatic activity because the G85R that lacks enzymatic function protected cells similarly to both WT SOD1 and A4V that possesses WT-like activity. These findings demonstrate new aspects of SOD1 in relation to cellular viability; specifically, mSOD1 can be either neuroprotective or cytotoxic depending on its aggregation state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据