4.5 Article

Nutritional deprivation of α-linolenic acid decreases but does not abolish turnover and availability of unacylated docosahexaenoic acid and docosahexaenoyl-CoA in rat brain

期刊

JOURNAL OF NEUROCHEMISTRY
卷 75, 期 6, 页码 2392-2400

出版社

WILEY
DOI: 10.1046/j.1471-4159.2000.0752392.x

关键词

docosahexaenoic acid; alpha-linolenic acid; phospholipids; polyunsaturated fatty acids; brain recycling; diet

向作者/读者索取更多资源

We applied our in vivo fatty acid method to examine concentrations, incorporation, and turnover rates of docosahexaenoic acid (22:6 n-3) in brains of rats subject to a dietary deficiency of a-linolenic acid (18:3 n-3) for three generations. Adult deficient and adequate rats of the F3 generation were infused intravenously with [4,5-H-3]docosahexaenoic acid over 5 min, after which brain uptake and distribution of tracer were measured. Before infusion, the plasma 22:6 n-3 level was 0.2 nmol ml(-1) in 18:3 n3-deficient compared with 10.6 nmol ml(-1) in control rats. Brain unesterified 22:6 n-3 was not detectable, whereas docosahexaenoyl-CoA content was reduced by 95%, and 22:6 n-3 content in different phospholipid classes was reduced by 83-88% in deficient rats. Neither plasma or brain arachidonic acid (20:4 n-6) level was significantly changed with diet. Docosapentaenoic acid (22:5 n-6) reciprocally replaced 22:6 n-3 in brain phospholipids. Calculations using operational equations from our model indicated that 22:6 n-3 incorporation from plasma into brain was reduced 40-fold by 18:3 n-3 deficiency. Recycling of 22:6 n-3 due to deacylation-reacylation within phospholipids was reduced by 30-70% with the deficient diet, but animals nevertheless continued to produce 22:6 n-3 and docosahexaenoyl-CoA for brain function. We propose that functional brain effects of n-3 deficiency reflect altered ratios of n-6 to n-3 fatty acids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据