4.5 Article

Dietary flavonoid (-)epicatechin stimulates phosphatidylinositol 3-kinase-dependent anti-oxidant response element activity and up-regulates glutathione in cortical astrocytes

期刊

JOURNAL OF NEUROCHEMISTRY
卷 106, 期 5, 页码 2194-2204

出版社

WILEY
DOI: 10.1111/j.1471-4159.2008.05542.x

关键词

Alzheimer's disease; flavonoids; neuroprotection; nuclear factor erythroid-2-related factor; oxidative stress; phosphatidylinositol 3-kinase

资金

  1. Biotechnology and Biological Sciences Research Council [D20463] Funding Source: Medline
  2. Biotechnology and Biological Sciences Research Council [D20463] Funding Source: researchfish

向作者/读者索取更多资源

Flavonoids are plant-derived polyphenolic compounds with neuroprotective properties. Recent work suggests that, in addition to acting as hydrogen donors, they activate protective signalling pathways. The anti-oxidant response element (ARE) promotes the expression of protective proteins including those required for glutathione synthesis (xCT cystine antiporter, gamma-glutamylcysteine synthetase and glutathione synthase). The use of a luciferase reporter (ARE-luc) assay showed that the dietary flavan-3-ol (-)epicatechin activates this pathway in primary cortical astrocytes but not neurones. We also examined the distribution of NF-E2-related factor-2 (Nrf2), a key transcription factor in ARE-mediated gene expression. We found, using immunocytochemistry, that Nrf2 accumulated in the nuclei of astrocytes following exposure to tert-butylhydroquinone (100 mu M) and (-)epicatechin (100 nM). (-)Epicatechin signalling via Nrf2 was inhibited by wortmannin implicating a phosphatidylinositol 3-kinase-dependent pathway. Finally, (-)epicatechin increased glutathione levels in astrocytes consistent with an up-regulation of ARE-mediated gene expression. Together, this suggests that flavonoids may be cytoprotective by increasing anti-oxidant gene expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据