4.5 Article

Depression of excitatory transmission at PF-PC synapse by group III metabotropic glutamate receptors is provided exclusively by mGluR4 in the rodent cerebellar cortex

期刊

JOURNAL OF NEUROCHEMISTRY
卷 105, 期 6, 页码 2069-2079

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1471-4159.2008.05290.x

关键词

(1S,2R)-1-amino-2 phosphonomethylcyclopropanecarboxylic acid; autoreceptor; cerebellar cortex; metabotropic glutamate receptor 4; pre-synaptic calcium inhibition

向作者/读者索取更多资源

In the rodent cerebellum, pharmacological activation of group III pre-synaptic metabotropic glutamate receptors (mGluRs) by the broad spectrum agonist L-2-amino-4-phosphonobutyric acid, acutely depresses excitatory synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses. Among the group III mGluR subtypes, cerebellar granule cells express predominantly mGluR4, but also mGluR7 and mGluR8 mRNA. Taking into account that previous functional and pharmacological studies have used group III mGluR broad spectrum agonists that do not differentiate between these various subtypes, their relative contribution to the modulation of glutamatergic transmission at PF-PC synapses remains to be elucidated. In order to clarify this issue, we applied conventional whole-cell patch-clamp recordings and pre-synaptic calcium influx measurements, combined with pharmacological manipulations to rat and mice cerebellar slices. With the use of (1S,2R)-1-amino-2-phosphonomethylcyclopropanecarboxylic acid, a new and selective group III mGluR agonist, N-phenyl-7-(hydroxylimino)cyclopropa[b]-chromen-1a-carboxamide, the specific positive allosteric modulator of mGluR4, (S)-3,4-dicarboxyphenylglycine, a selective mGluR8 agonist, and mGluR4 knock-out mice, we demonstrate that the inhibitory control of group III mGluRs on excitatory neurotransmission at PF-PC synapses of the rodent cerebellar cortex, is totally because of the activation of pre-synaptic mGluR4 autoreceptors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据