4.5 Article

ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells

期刊

JOURNAL OF NEURO-ONCOLOGY
卷 110, 期 3, 页码 349-357

出版社

SPRINGER
DOI: 10.1007/s11060-012-0979-0

关键词

Temozolomide; Glioblastoma; DNA repair; ATM inhibitor

资金

  1. NIH SPORE [CA108961]
  2. NIH [RO1 CA127716]
  3. Brain Tumor Funder's Consortium

向作者/读者索取更多资源

Ataxia telangiectasia mutated (ATM) kinase is critical in sensing and repairing DNA double-stranded breaks (DSBs) such as those induced by temozolomide (TMZ). ATM deficiency increases TMZ sensitivity, which suggests that ATM inhibitors may be effective TMZ sensitizing agents. In this study, the TMZ sensitizing effects of 2 ATM specific inhibitors were studied in established and xenograft-derived glioblastoma (GBM) lines that are inherently sensitive to TMZ and derivative TMZ-resistant lines. In parental U251 and U87 glioma lines, the addition of KU-55933 to TMZ significantly increased cell killing compared to TMZ alone [U251 survival: 0.004 +/- 0.0015 vs. 0.08 +/- 0.01 (p < 0.001), respectively, and U87 survival: 0.02 +/- 0.005 vs. 0.04 +/- 0.002 (p < 0.001), respectively] and also elevated the fraction of cells arrested in G2/M [U251 G2/M fraction: 61.8 +/- 1.1 % vs. 35 +/- 0.8 % (p < 0.001), respectively, and U87 G2/M fraction 25 +/- 0.2 % vs.18.6 +/- 0.4 % (p < 0.001), respectively]. In contrast, KU-55933 did not sensitize the resistant lines to TMZ, and neither TMZ alone or combined with KU-55933 induced a G2/M arrest. While KU-55933 did not enhance TMZ induced Chk1/Chk2 activation, it increased TMZ-induced residual gamma-H2AX foci in the parental cells but not in the TMZ resistant cells. Similar sensitization was observed with either KU-55933 or CP-466722 combined with TMZ in GBM12 xenograft line but not in GBM12TMZ, which is resistant to TMZ due to MGMT overexpression. These findings are consistent with a model where ATM inhibition suppresses the repair of TMZ-induced DSBs in inherently TMZ-sensitive tumor lines, which suggests an ATM inhibitor potentially could be deployed with an improvement in the therapeutic window when combined with TMZ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据