4.6 Article

3D Parylene sheath neural probe for chronic recordings

期刊

JOURNAL OF NEURAL ENGINEERING
卷 10, 期 4, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1741-2560/10/4/045002

关键词

-

资金

  1. Defense Advanced Research Projects Agency (DARPA) MTO under the auspices of Dr Jack Judy through the Space and Naval Warfare Systems Center, Pacific [N66001-11-1-4207]

向作者/读者索取更多资源

Objective. Reliable chronic recordings from implanted neural probes remain a significant challenge; current silicon-based and microwire technologies experience a wide range of biotic and abiotic failure modes contributing to loss of signal quality. Approach. A multi-prong alternative strategy with potential to overcome these hurdles is introduced that combines a novel three dimensional (3D), polymer-based probe structure with coatings. Specifically, the Parylene C sheath-based neural probe is coated with neurotrophic and anti-inflammatory factors loaded onto a Matrigel carrier to encourage the ingrowth of neuronal processes for improved recording quality, reduce the immune response, and promote improved probe integration into brain tissue for reliable, long-term implementation compared to its rigid counterparts. Main results. The 3D sheath structure of the probe was formed by thermal molding of a surface micromachined Parylene C microchannel, with electrode sites lining the interior and exterior regions of the lumen. Electrochemical characterization of the probes via cyclic voltammetry and electrochemical impedance spectroscopy was performed and indicated suitable electrode properties for neural recordings (1 kHz electrical impedance of similar to 200 k Omega in vitro). A novel introducer tool for the insertion of the compliant polymer probe into neural tissue was developed and validated both in vitro using agarose gel and in vivo in the rat cerebral cortex. In vivo electrical functionality of the Parylene C-based 3D probes and their suitability for recording the neuronal activity over a 28-day period was demonstrated by maintaining the 1 kHz electrical impedance within a functional range (<400 k Omega) and achieving a reasonably high signal-to-noise ratio for detection of resolvable multi-unit neuronal activity on most recording sites in the probe. Immunohistochemical analysis of the implant site indicated strong correlations between the quality of recorded activity and the neuronal/astrocytic density around the probe. Significance. The provided electrophysiological and immunohistochemical data provide strong support to the viability of the developed probe technology. Furthermore, the obtained data provide insights into further optimization of the probe design, including tip geometry, use of neurotrophic and anti-inflammatory drugs in the Matrigel coating, and placement of the recording sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据