4.6 Article

Changes in biphasic electrode impedance with protein adsorption and cell growth

期刊

JOURNAL OF NEURAL ENGINEERING
卷 7, 期 5, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1741-2560/7/5/056011

关键词

-

资金

  1. Commonwealth of Australia
  2. National Institutes of Health [NIH-N01-DC-3-1005, NIDCD HHS-N-263-2007-00053-c]

向作者/读者索取更多资源

This study was undertaken to assess the contribution of protein adsorption and cell growth to increases in electrode impedance that occur immediately following implantation of cochlear implant electrodes and other neural stimulation devices. An in vitro model of the electrode-tissue interface was used. Radiolabelled albumin in phosphate buffered saline was added to planar gold electrodes and electrode impedance measured using a charge-balanced biphasic current pulse. The polarization impedance component increased with protein adsorption, while no change to access resistance was observed. The maximum level of protein adsorbed was measured at 0.5 mu g cm(-2), indicating a tightly packed monolayer of albumin molecules on the gold electrode and resin substrate. Three cell types were grown over the electrodes, macrophage cell line J774, dissociated fibroblasts and epithelial cell line MDCK, all of which created a significant increase in electrode impedance. As cell cover over electrodes increased, there was a corresponding increase in the initial rise in voltage, suggesting that cell cover mainly contributes to the access resistance of the electrodes. Only a small increase in the polarization component of impedance was seen with cell cover.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据