4.5 Article

Influence of structural hierarchy on the fracture behaviour of tooth enamel

出版社

ROYAL SOC
DOI: 10.1098/rsta.2014.0130

关键词

enamel; hydroxyapatite; hierarchy; fracture toughness; R-curve; bending strength

资金

  1. German Research Foundation [SCHN 372/18-1]

向作者/读者索取更多资源

Tooth enamel has the critical role of enabling the mastication of food and also of protecting the underlying vital dentin and pulp structure. Unlike most vital tissue, enamel has no ability to repair or remodel and as such has had to develop robust damage tolerance to withstand contact fatigue events throughout the lifetime of a species. To achieve such behaviour, enamel has evolved a complex hierarchical structure that varies slightly between different species. The major component of enamel is apatite in the form of crystallite fibres with a nanometre-sized diameter that extend from the dentin-enamel junction to the oral surface. These crystallites are bound together by proteins and peptides into a range of hierarchical structures from micrometre diameter prisms to 50-100 mu m diameter bundles of prisms known as Hunter-Schreger bands. As a consequence of such complex structural organization, the damage tolerance of enamel increases through various toughening mechanisms in the hierarchy but at the expense of fracture strength. This review critically evaluates the role of hierarchy on the development of the R-curve and the stress-strain behaviour. It attempts to identify and quantify the multiple mechanisms responsible for this behaviour as well as their impact on damage tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据