4.2 Article

In Vitro Degradation Behavior of Silica Nanoparticles Under Physiological Conditions

期刊

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
卷 12, 期 8, 页码 6346-6354

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2012.6199

关键词

Degradation; Silica Nanoparticles; Physiological Media; Shape; Surface Chemistry

资金

  1. National Natural Science Foundation of China [81000667, 30900349, 81171454]

向作者/读者索取更多资源

Understanding the degradability of silica nanoparticles is significant for the rational design of desired nanomaterials for various biomedical applications. However, the effect of the intrinsic properties of silica nanoparticles, such as particle shape, surface chemistry, and porosity, on kinetic degradation process under different extrinsic conditions has still received little attention. Herein, mesoporous silica nanoparticles (MSNs) with different aspect ratios (ARs, 1, 2, and 4), the corresponding PEG-functionalized MSNs, and amorphous Stober spherical silica nanoparticles were specially designed and their degradation was evaluated in in vitro simulated physiological media. The results show that shape, surface properties and porosity of nanoparticles, as well as the component of simulated physiological media, play important roles in tuning the degradation kinetics and behaviors. Sphere-shaped MSNs have a faster degradation rate than rod-shaped counterparts. Naked MSNs are eroded from particle external surface, while PEGylated MSNs from interior of particles. And spherical MSNs display more extensive degradation than amorphous silica nanoparticles. The presence of fetal bovine serum (FBS) in Dulbecco's Modified Eagle's Medium (DMEM) can accelerate the degradation process. These results can provide useful guidelines for the rational design of silica nanoparticles for biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据