4.2 Article

Metal-Oxide-Doped Silica Nanoparticles for the Catalytic Glycolysis of Polyethylene Terephthalate

期刊

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
卷 11, 期 1, 页码 824-828

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2011.3201

关键词

PET Recycling; BHET; Depolymerization; Glycolysis; Nanocomposite

向作者/读者索取更多资源

Polyethylene terephthalate (PET) was depolymerized to monomer bis(2-hydroxyethyl) terephthalate (BHET) using excess ethylene glycol (EG) in the presence of metal oxides that were impregnated on different forms of silica support [silica nanoparticles (SNPs) or silica microparticles (SMPs)] as glycolysis catalysts. The reactions were carried out at 300 degrees C and 1.1 MPa at an EG-to-PET molar ratio of 11:1 and a catalyst-to-PET-weight ratio of 1.0% for 40-80 min. Among the four prepared catalysts (Mn3O4/SNP5, ZnO/SNPs, Mn3O4/SMPs, and ZnO/SMPs), the Mn3O4/SNPs nanocomposite had the highest monomer yield (>90%). This high yield may be explained by the high surface area, amorphous and porous structure, and existence of numerous active sites on the nanocomposite catalyst. The BHET yield increased with time and reached the highest level where equilibrium was established between BHET and its dimer. The catalysts were characterized by their SEM, TEM, and BET surface areas, and via XRD, whereas the monomer BHET was characterized by HPLC and FT-IR. The glycolysis with the Mn3O4/SNPs nanocomposite as the glycolysis catalyst produced a maximum BHET in a short reaction time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据